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A modified Robertson-Walker metric is used to obtain solutions for matter 
density in the time interval -oo  < t < + oo. The manner in which a complex 
Coulomb potential might produce the observed matter-antimatter asymmetry of 
the universe is described. 

1. THE METRIC 

The metr ic  chosen for s tudy is 

ds 2 = ef(X~ dxO) 2 - eh(X ~ dr 2 q- r 2 dO 2 + r2sin2 ( 0 )  dq~ 2 

[1 + ( k / 4 ) ( r 2 / L  2)]2 
(1) 

Wi th  f ( x ~  equa t ion  (1) becomes  the usual  R o b e r t s o n - W a l k e r  metric.  
The  field equat ions  chosen for s tudy are those  with zero cosmologica l  term 

1 87rG T// (2) 
R i j  -- - ~ g i j R  = _ c2 

The  e n e r g y - m o m e n t u m  tensor  is 

T / =  

D(t) 0 0 0 

0 -- p / c  2 0 0 

0 0 -- p / c  2 0 

0 0 0 -- p / c  2 

73 

(3) 
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in which D = D(t) represents average matter density and p = p(t)  repre- 
sents average internal pressure of matter (or energy). The notation for 
derivatives is f ' =  df/dx ~ = df/c dt = f /c .  (Adler et al., 1975) 

The result from equations (1), (2), and (3) is 

2D' 
h' - (4) 

3 ( D +  p / c  2) 

4D '2 ( 32~rGD 4ke-h ) - l  e f= (5) 
9(D + p / c  2)2 ac E L 2 

Solutions for density D and temperature T, using equations (4) and (5), will 
be obtained for various eras in the time interval - oo < t < + oo. Hence, the 
possibility of mathematical and physical solutions prior to the big bang 
(t =0) of standard model cosmology will be investigated. In addition, a 
method of joining the solutions for density immediately before and after 
t =0  will be presented for the k- -0  case in the elementary particle model 
(Weinberg, 1972). 

Table I presents a description of the seven eras studied. N represents, in 
the elementary particle model, % / 2  different kinds of elementary particles, 
counting spin states and antiparticles separately, and counting fermions as 
7/8 of a particle (Weinberg, 1972). N = 9 / 2  for 10 I~ K=T<1012 K 
(Weinberg, 1972). For eras 1 and 2, the usual Robertson-Walker metric is 
used so that e / =  1 for them. From equation (5), one can determine that 
e / = 2 / 9  and 1 /N  for eras 3 and 4, with k =0, in comparison to a pure 
photon era. B and A in the e h column are integration constants. The 
coordinate velocity of the photon will be discussed later. 

2. ERA1 

B 1 = 1/24rrG, B 2 =3c2/81rGL2B 2/3, and e h = R2(t)//L 2 are used. 

(i) k : 0 :  

1 
D - -  - -  

61rGt 2 
(6) 

R = L(6~rGB)'/3t 2/3 (7) 
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( i i )  k = - 1 :  

(BE 1D1/3 + 1) I/2 

2B~IDI/3 
l+(B~D~/3+l)l/2 ( B  3 )1/2 

1 l o g  e = t 2 B21/2D1/6 

R ( r ) :  B'/3~L (cosh2~" --1) 
2B2 

ctO')= B'/SL (sinh2r -2 r )  
2B: 

( s )  

(9) 

(lO) 

( i i i )  k = + 1: 

(B~ID~/3-1)~/2+l 1 ( B3 ) 1/2 
2B2 IDI/3 ~sin -I - -  -- t --  B 2 1 D I / 6  

( t l )  

BW3L 
R(~')= 2B 2 (1-cos2~') (12) 

BI/3L 
ct(~)= 2 B ~  (2~'- sin2~') (13) 

Comparing equations (7), (9), and (12) with the standard derivations 
(Adler et al.), one finds 

( i )  k = O: 

c2D~ 11/3 
L~'/3 = ~ -gg-C t (14) 

( i i )  k = - -  1: 

L~'/3=( 3r [ - - -  _ff_~_~ ) 1/3 2qoc ]1/3 
(1-2qo)3/ZH] 

(15) 

( i i i )  k = + 1: 

LB,/3=( 3c2 ,/3[ 2qoC ],/3 
-8~-~G ) [ ( 2 q o _-~3 / 2 H (16) 
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in which D O is an undetermined constant, q0 is the deceleration parameter, 
and H is Hubble's constant. 

From equation (11), the minimum density in a k = + 1 universe is given 
by B~: 

Dmi ~ = 1 . 4 •  10 -30 (2q~ - 1)3 g / cm 3 (17)  
qo 2 

For qo = 1, Dmi ~ = 1.4• 10 -30 g / c m  3, reached at t = 5 . 6 •  101~ years. 

3. E R A 2  

Letting A I = 3/128~rG and A 2 = 3c2/8rrGLZA I/2, 

T : (  4A__A~_:2 ) I/4t-1/2(1 - A2t ' "  

(18) 

k A2t ) - z  D =  3 1 -  - -  (19) 
321rGt 2 8All/z 

4. E R A 3  

Only k = 0 is used, and only the density equation written out, for eras 
3, 4, 6, and 7: 

9 _ _  / D = ~ (  3 (20) 
32 ~rGt 2 J 

5. E R A 4  

We have 

3N 
D= 32~rG_t+hl_Z,( ) h i > 0  (21) 

in which h 1, the constant of integration, is not set equal to zero in order to 



78 Corsiglia 

join the solution of era 4 to the solution of era 7 at t --0. Eras 4 and 7 are 
both described by the same N, making physical continuity across t = 0  
plausible. (Sections 11 and 12 discuss the possibility of N changing near 
t =0.)  

6. E R A 5  

Equations (1), (4), and (5) yield, for the coordinate speed squared of a 
single photon, 

AI A2k/'   22, 
C--'- ~ ~ AI/2 D5/2 1-- D1/2 ] 

It is assumed that da/dt = c in era 5. From equation (22), one can 
determine that do /cd t=(2 /9 )  ~/4 and (1 /N)  I/4 for eras 6 and 7, with 
k = 0, in comparison to a pure photon era. 

(i)  k = 0 :  

16A1 c ) l /z  1 (23) 
T = -  Al/2al/2 T 

D = ( 2 5 6 A ~ /  1 
I t~ (24) 

T and D each begin at zero (t = - or and each approach a singularity at 
t --0. But pair production interferes at T = 6 • 109 K as era 6 is approached. 

( i i )  k = - 1: 

[ A2 c i/2 [ ! Al/2 A 
(25) 

O=+ch[ Al/ 2 )lJ24/]} (26) 
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T and D vary as in the k = 0 case. 

(iii) k = + 1: 

(27) 

D= 2f [/A'/2A~ (28) 

Since equation (27) allows oscillating and negative T and since equations 
(12) and (13) are cyclic in era 1 for k = + 1, one likely need not consider the 
possibility of a solution for t < 0  for k = + 1. 

We have 

7. E R A 6  

D 9(256A~ 1 (29) 

8. E R A 7  

We have 

256A~N 
D-- A(t+h2)4, h 2 < 0  (30) 

in which h 2 is the nonzero constant of integration for era 7. 

9. D(t--0) 

Setting the density functions and their second derivatives for eras 4 and 
7 equal to each other at t =0 ,  one obtains 

D(t =0)=0 .7NA g / c m  3 (31) 
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in which the integration constant A represents a density. (See Table I.) If A 
represents the density at the end of a given era (for example, the density at 
which electron-positron production occurs at the end of era 5), then A 
could represent the density at which free quarks are produced from baryons 
at the end of era 7 in equation (31). Since first derivatives cannot be 
matched at t -- 0, a discontinuity in slope still occurs at t = 0. 

10. COMPLEX COULOMB POTENTIAL 

The use of complex space-time coordinates has been introduced into 
physics (Thiess, 1968; Newman, 1973; Adler et al., 1975; Corsiglia, 1975 
and 1976). The complex Coulomb potential is given by e / x  with x = r + ib, 

r the usual radial coordinate and b real. The complex electric field is given 
by E~ = e / x  2 and the energy density by w = IEx[ 2/8~r. Integrating over all 
space to find the self-energy, one obtains 

~-e 2 
W -  8b (32) 

If a classical point particle is described by b = 0, then the self-energy of such 
a particle is infinite. If the self-energy of an isolated electron with zero 
velocity is identified with its rest mass energy mc 2 (Marmier and Sheldon, 
1969), then b = 1.11 • 10-13 cm. Generalizing, one might expect the interac- 
tion length b to be inversely proportional to total energy. For example, for 
two charged particles in a real potential there are contributions from each of 
the two self-energy terms plus a contribution from the interaction potential 
energy term (Jackson, 1962). Generalizing to a complex potential, one 
obtains for the proton-electron system of hydrogen 

~ e  2 

b n =  8(me c2 + mpc 2 + What) (33) 

in which Win t represents the binding energy (energy eigenvalue) of the 
system. It can be shown that if one solves the time-independent Schr/3dinger 
equation for the hydrogen atom using a complex radial coordinate no 
change in energy eigenvalues will occur. The radial solution is then given by 
the confluent hypergeometric function F, l (y ) = F ( -  2% + 1 + I, 2l + 2, y) 
(Landau and Lifshitz, 1965; Merzbacher, 1970). 
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11. MA'IWER-ANTIMATrER ASYMMETRY 

The complex electric potential for a single charged particle is given by 

e _ e (r - ib )= Pn - iPt (34) 
x r 2 + b  2 

Postulating the convention that negative PI describes a source and positive 
Pt describes a sink (similar to the potential energy case (Schiff, 1968)), let b 
be positive for electrons and positrons. The electron, with - l el, would have 
the attributes of a source, and the positron, with +lel, would have the 
attributes of a sink. 

Using the formulas for the number of particles in and the energy of 
positron and electron gases with k s T  >> me c2 (Landau and Lifshitz, 1969), 
the energy of a single such particle is 3.14ksT. The interaction length for a 
single particle is then given by b--2.1 X 10-4/T. Evaluating equation (34) 
at r -- 0, one finds 

Pr(r = 0 ) =  b = ~2.3 X 10-6T (35) 

The core of the positron becomes an increasingly effective sink (plus sign) as 
T increases. The core of the electron, acting as source (minus sign), 
maintains the electron in space-time existence as T increases. The number of 
positrons would become less than the number of electrons near t =0,  thus 
introducing an asymmetry between matter and antimatter. If one is con- 
fined to the electric force, then b must be chosen negative for protons and 
antiprotons in order to produce the appropriate asymmetry between them. 
For the case of ncutrons-antineutrons, one could consider that they decay 
into protons-antiprotons and so contribute slightly (due to their long 
half-life) to the excess of protons over antiprotons. (Massy particles other 
than electrons, protons, and neutrons could also lose their antiparticles in 
the asymmetry mechanism, but they are unstable themselves so they would 
not remain in excess.) 

12. D(t =0) F O R  VARIABLE N 

Assume the generalization d o / c d t  : [ 1 / N ( t ) ]  I/4 with N(t)  no longer a 
constant within a given era as it was previously and with N(t)  decreasing 
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after reaching a max imum of N at t v The decrease in N ( t )  would be caused 
by the asymmetry  mechanism of Section 11. Use k = 0. 

(i) Let N ( t ) =  N/2(1 + t / t l ) ,  t 1 <~ t ~<0; then 

[ 81A~N ) 1 (36) 
D = ~  2At4 ( l + t / t ' )  3 

D( t  = 0 ) - -  81A~N (37) 
2At  4 

(ii) Let N ( t ) =  Ne - ~  t~ <- t ~<0; then 

D : A~N e -  0_' / ' , )  (38) 
At  4 

D( t  = 0 ) -  A~N (39) 
eAt~ 
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